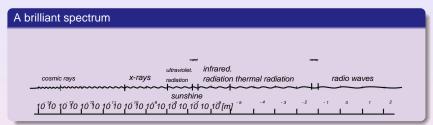
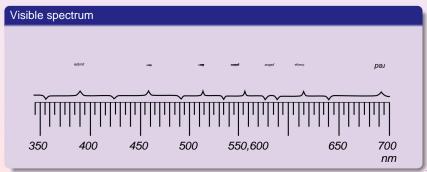
Cartographic polygraphy and reprography

Color reproduction

Peter Soukup

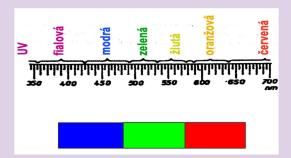
Department of Geomatics
Faculty of Civil Engineering, CTU in Prague


Light


Physical essence

- Maxwell (electromagnetic field) part of the radiant energy emitted by bodies and causing a sensation - vision on the retina of the human eye
- Planck (quantum theory) light energy emitted in bursts

Electromagnetic spectrum



Basic colours

RGB

When the brightness decreases, three main broad spectral bands can

- be observed: blue (B Blue) in the range 400–490 nm green (G
- Green) in the range 495–565 nm red (R Red) in the range
- 640-750 nm

Color perception

The principle of vision

- Human color vision consists in the analysis, evaluation and encoding
 of information that the eye obtains from a color stimulus.
- By processing the stimulus in the brain, the information becomes a color perception.
- The image in the eye is created on the retina equipped
 - with: cones for detecting basic colors (RGB)
 - rods for the perception of color intensity (we perceive the image as black and white in the dark)

Color perception

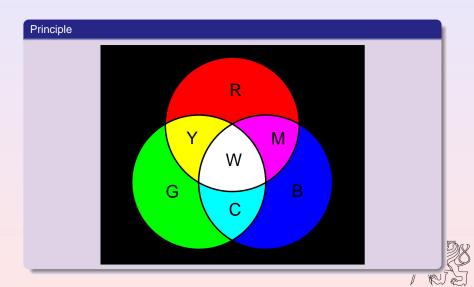
Color perception

The eye perceives:

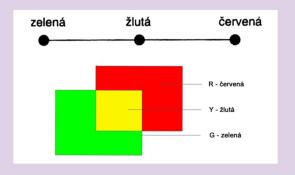
- hue color tone corresponds to the wavelength of light reflected from the object saturation - color saturation - colors have the
- highest saturation spectral **brightness** lightness of color decreases as light
- intensity decreases

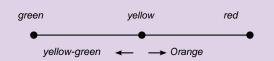
HSB color system

The HSB system is the most natural to human perception, it includes:


- H (Hue) shade of color
- S (Saturation) color saturation (100% for spectral colors)
- B (Brightness) color brightness

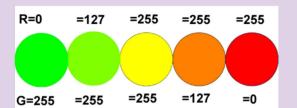
Color system RGB


- basic colors R, G, B
- numerical values in the range 0 to 255 (8 bits -
- 28), multi-bit coding possible
- spectral colors (fully saturated colors) have a value of
- 255 more than 16.7 million colors can be expressed
- (2563) used for input devices (scanner, camera, monitor)

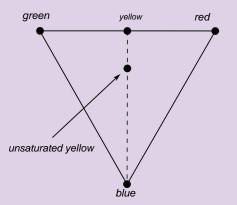

Color hue

Additive color mixing at the same light intensity of two projectors (R, G).

Shade of

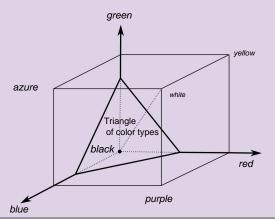

color When one of the projectors is **shaded** with green or red colors, **yellow-green** or **orange colors will be produced.**

Mathematical expression of the color


shade Additive mixing of the saturated base color R and G results in a saturated yellow color.

Color

saturation **Rich** (saturated) colors are spectral colors that are located on the perimeter of the triangle - the saturation decreases towards its center (white).

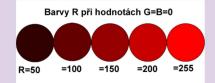


Mathematical expression of color saturation The

saturation of the yellow color is reduced by adding the values of the blue color (B).

Color

brightness Color **brightness** (lightness) decreases when light intensity decreases - it can be expressed as a spatial color body.

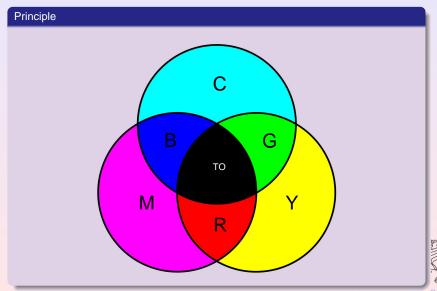


Mathematical expression of color

brightness Spectral colors have the highest brightness, e.g. red at a value of R=255.

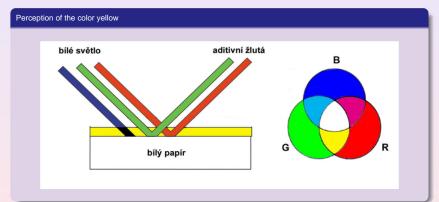
Mathematical expression of gray

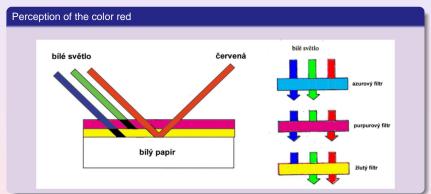
color By additively mixing all three basic colors with the same saturation **k**, we obtain **a scale of gray colors.**



CMYK color system

- from the set of wavelengths of light, the wavelengths of complementary colors are subtracted, complementary colors
- are used when printing: C Cyan (cyan), M Magenta (purple),
- Y Yellow (yellow), K Key (black, key) the amount of color indicates in percentages (0-100%) the subtractive mixing of
- saturated complementary colors results in reverse basic colors
- (RGB)





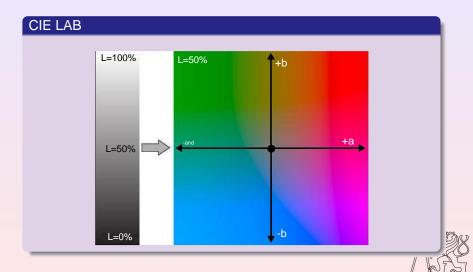
Color filters Printing inks act as color filters. bílé světlo M С azurový filtr purpurový filtr žlutý filtr

Other color systems

CIE LAB

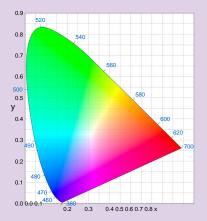
Light

- Standard color table CIE (Commission Internationale de l'Eclairage) - 1976, based on imaginary basic colors marked XYZ (corresponding approximately to RGB).
- Color description is provided by the CIE L*a*b* color system (uses lightness, hue and saturation).

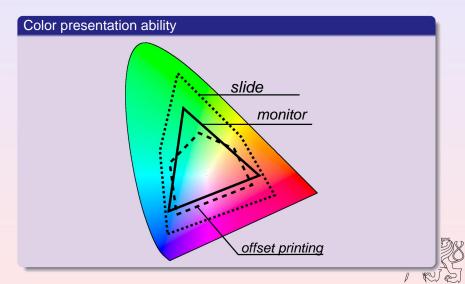

Other color systems

CIE LAB

- The system uses color pairs (red-green, yellow-blue, black-white)
 that are based on the vision and perception of color by the human eye.
- Hue and saturation create a chrominance plane, colors are defined by coordinates a*b*, which can take values from ÿ90ÿ to +90ÿ.
- The brightness L* takes on a value of 0% to 100%.


Other color systems

Chromaticity diagram


CIE

xyY Set of all visible colors. The connector of two colors contains all shades that can be created by mixing them.

Color gamut

Color gamut

Color gamut

- Color presentation capability is dependent on the device used.
- Colors outside the gamut are replaced by other (reproducible) colors.
- When printing, the gamut can be expanded by adding additional printing colors (usually green, violet or orange) - e.g. hexachrome is used instead of CMYK four-color printing.

Overlapping of networked campuses

Overlapping of networked campuses

Reproduction of a color original

Task

- o color original (map, orthophoto, photograph, . . .) creation
- of color faithful copy facsimile (analog x digital process)

Origina

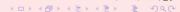
- digitalization solution (resolution)
- original modification (retouch, color correction)
- original reproduction (cost, printing method)

Equipment

Equipment for working with paint

- scanner (table, drum) digital
- camera (DSLR Digital Single Lens Reflex) monitor (CRT Cathode
- Ray Tube, LCD Liquid Crystal Display) printer (inkjet, laser, ...) printing machine (offset, digital printing, ...)
- 0
- 0
- PC hardware and software (graphics card, operating system)

Color measurement


Machines

For objective color measurement, the following is used:

- colorimeter
- spectrophotometer

Colorimeter

- the sample is illuminated by a standard light source the
- reflected light is filtered through three color filters its
- intensity is measured by the voltage on the photodiodes
- the RGB values of the sample are obtained less accurate
- than a spectrophotometer

Color measurement

The spectrophotometer

- measures in individual parts of the visible spectrum (380-730 nm) with a
- measurement step of 5 nm or less
- comprehensive overview of the spectral composition of
- o color manual x automatic spectrophotometer can be
- profiled and LCD displays can distinguish metamerism

X-Rite ColorMunki

Properties

- profiling of monitors, RGB and CMYK printers,
- creation of ICC profiles, connection to a PC via a
- USB port, the possibility of transferring measured
- values (e.g. to Photoshop or Gimp) capturing colors directly from the screen or printed material
- •

X-Rite ColorMunki

Metamerism

Metameric colors

- of a color with a different spectral composition can be visually perceived as the same color due to the lighting or the observer the
- effect of lighting different lighting leads to the distinction of colors the
- effect of the observer a different observer differentiates the colors
- •

Color matching

Color deviation ÿE CIE

- LAB color space
- the difference of two colors ÿE
- ÿE = ÿ ÿL 2 + ÿa 2 + ÿb 2

Perception of color deviation

у⊨	color		ı	
< 0.2	difference		ı	
0.2 – 1.0	imperceptible		ı	
1.0 – 2.0	perceptible		ı	
2.0 - 4.0	discernible not		ı	
4.0 - 8.0	yet disturbing		ı	
> 8.0	slightly disturbi	ng	di	st

Color management system

Color Management System - CMS Color

management is of fundamental importance in the field of polygraphy. Task: ensure the maximum possible color matching

• in the reproduction process Solution:

determine true colors for input device RGB values 2 preserve true colors when transferred between devices

Color management system

Components

- O Device profile RGB (CMYK) ÿ CIE LAB (CIE XYZ)
- Profile connection space (Profile Connection Space PCS)
- SColor Management Module (CMM) − color conversion program
- Gamut recalculation method (also rendering method) method of rendering colors outside the gamut

Device profile

ICC profile

- assigns RGB or CMYK values of the device to a color in the CIE LAB or CIE XYZ space describes the color space
- of the device, its gamut and color reproduction behavior ICC (International Color Consortium) – standardization of the profile
- structure ICC specification defines the format of the profile file
 ICC profile implementation of the profile in the form of a lookup
- table (only samples the rest will be calculated by CMM)

•

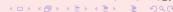
ICC profile

According to the scope

- of use for a specific device differences between products of the
- same model for a specific device model a generic profile for an
- abstract color space e.g. sRGB, Adobe RGB, etc.

By device type input

- device profiles display
- device profiles output device
- profiles


ICC profile

Use

- color conversion from one device to another (using PCS) 1st
- device source profile 2nd device target profile monitor –
- both output and input devices (editing according to visual
- impression) output device also in the role of input device (simulation of printing on another device)

•

Profile connection space

ICC profile

Creating a profile

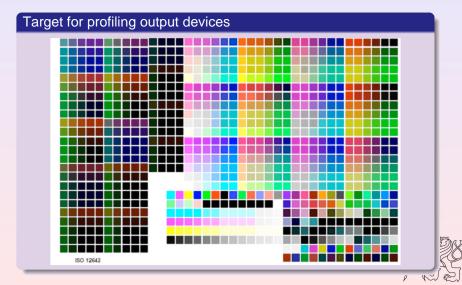
- equipment: device for measuring colors, specific color templates and software procedure: 1 – calibration of the device, 2 – profiling
- (characterization) of the device
- calibration setting the device to a stabilized state with the best profiling results - custom creation of an ICC profile (depending on
- the type of device)

Profile of the input device

- calibration suppression of all functions of the scanner or camera (noise suppression, sharpening, etc.) profiling – a standardized
- test sample (target, target) and a reference file with the color values of the sample are sufficient, the sample is scanned or photographed
- by comparing the obtained data with the reference file, a program
- is created profile profiles are made separately for reflective and transparent templates

•

A target for profiling scanners


Display device profile

- calibration adjustment of brightness, contrast, white point temperature and gamma value profiling approximate – in a visual
- way (insufficient for professional purposes) profiling accurate –
 using a measuring device on the monitor the program gradually
- sends known RGB values to the monitor the device measures the
- colors displayed on the monitor modern LCD monitors have larger
- gamut than CRT monitors
- •

The most complex output

- device profile describes the device, the paper used and
- the colors calibration specific to the type of device
- profiling a standardized master is printed the colors of
- the printout are measured and compared to the reference values
- output device profile types RGB, CMYK, Hexa Color (e.g. Pantone Hexachrome, CMYK+OG) profiles standardized by the standard (for
- technology, printed material, colors), e.g. for FOGRA offset according to the ISO standard 12647-2

Practical use of color management

Schematic procedure

- use an application with color management support (DTP area)
- assign (or insert) a color profile to each graphic file edit the color folder of documents on the profiled monitor
- •
- use the profile of the output device when printing

Publications

Basic resources

- Fraser, B., Murphy, Ch., Bunting F.: Color Management The Graphics and Pre-Press Professional's Guide, Computer Press, 2003, ISBN: 80-7226-943-7
- Dvoÿáková, Z.: DTP and prepress preparation. The complete guide from graphic design to professional printing.
 Computer Press, as Brno, 2008. ISBN 978-80-251-1881-8 Bann,
- D.: Polygrafická poudska, Slovart, Prague, 2008, ISBN: 978-80-7391-029-7

