SPATIAL DATA VISUALISATION IN THEMATIC MAPS II

Tomáš Janata, PhD | CTU in Prague – FCE, Dept. of Geomatics

Macroseismic map, 16th century. (Nice earthquake)

> Map of magnetic declination, Edmond Halley, 1701

Old thematic maps

.... 21st century

Canada

TYPES OF THEMATIC MAPS according to the concept of thematic content

- analytical thematic maps simple methods of representation, a phenomenon detected in the field or by analytical investigation, usually with no connection to other phenomena
- complex thematic maps phenomena of a related topic forming a logical whole (sometimes also referred to as component maps), combination of several simple representation methods
- synthetic thematic maps generalized thematic content (most often from complex maps), display of multiple phenomena to show connections and relationships, more complex thought processes used (abstraction, generalisation, synthesis)

Analytical thematic maps – examples of themes

Complex thematic maps – examples of themes

Geology

Crime

Tourism

Economics

14. Tržby za prodej vlastních výrobků a služeb průmyslové povahy na 1 zaměstnance v roce 2010 Sales of own products and services incidental to industry per employee in 2010

Synthetic thematic maps – examples of topics

tourist resorts

HLAVNÍ OBLASTI A CENTRA VÍKENDOVÉ A POBYTOVÉ REKREACE A CESTOVNÍHO RUCHU

geology - slope failures

Obr. 4.1 Příklad mapy svahových poruch Vtáčnika (Malgot a kol., 1983 in Matula, 1995)

spatial planning

climatic regions

TYPES OF THEMATIC MAPS according to the temporal aspect of the phenomenon depicted

- static maps
- dynamic maps
- genetic maps
- retrospective maps
- prognostic maps

old maps × historical maps

necessary to distinguish, to know the difference

Reconstruction map

Semotanová (2007)

- illustrates the results of research using modern cartographic means of expression on the basis of general geographical and other cartographic works, mostly contemporary, but also old
- it is a reconstruction of a phenomenon or a process that took place in the past, using cartographic means of expression
- it is used mainly in social sciences (archaeology, history, historical geography, ethnology, monument preservation, ...) and in other fields (geobotany, urban planning, landscape ecology, ...) etc.

- the term reconstruction map (RM) it covers types of thematic maps, dedicated to issues that took place in the past – in relation to the "historical map" it is a broader term (it can also refer to other disciplines than history)
- RM usually illustrates new research findings
 - as a synthetic body of knowledge on a selected topic
 - as a detailed analytical probe on the selected topic
 - as a comprehensive view of a certain epoch
 - as a comparison of individual themes or periods
- RM as outputs of scientific work:
 - usually digital maps and their analogue variants
 - use of digital cartography and GIS tools and methods
 - cooperation of the expert/topic specialist with the geoinformatician/cartographer

Cartographic expression on thematic maps

different authors = different approaches

Methods (prof. Veverka): points (dots) motion lines (vectors) isolines tables, charts diagram maps choropleths cartographic anamorphosis <u>network mapping method</u>

Methods (prof. Voženílek): dot signs line signs area signs dot method method of isolines dasymetric method diagram maps choropleths cartographic anamorphosis <u>cartotypograms</u> methods for expressing the dynamics of spatial phenomena

Choosing a method for creating a thematic map

Selection criteria

- map target
- map functions orientation, topological, classification, information, (educational, planning, navigation, advertising, promotional, ...)
- target group of users education, age, experience...
- the volume of information communicated content and graphic filling
- the nature of the input spatial data
 - positional determination of data (relation to a point, line or area)
 - <u>quantitative</u> (relative or absolute) or <u>qualitative</u> properties of the phenomenon

DASYMETRIC METHOD

- for representing areas with the same intensity of the phenomenon (density)
- the territorial units to which the phenomenon relates are not predetermined – they are defined on the basis of the geographical distribution of the phenomenon
- more natural boundaries of the values of the displayed phenomenon – more accurate presentation of the variability of the phenomenon (compared to a choropleth)
- less used method but often used for demographic maps (population density)

Creating a dasymetric map

a) from the dot method – analysis of a map with topographic localization of dots: delineation of areas of equal dot density (analysis of dot distance *d*)

b) from the choropleth – merging of territorial units in the choropleth

Creating a dasymetric map

c) using auxiliary data/information (e.g. remote sensing data)

Auxiliary data

- limiting variables
 - define places where the phenomenon does not occur
 - are essential for the refinement of the dasymetric method
 - e.g. watercourses and water bodies (for population density)

related variables

- additional information
- information about a related phenomenon with a proven correlation to the phenomenon depicted

The principle of using auxiliary data

calculation of new population densities

Ways of using auxiliary data (dasymetric method)

binary method

- division into areas with and without the occurrence of the phenomenon
- recalculation of the density of the phenomenon to the area of the area of occurrence

three-class method

- division of the mapped area into three categories with different weights for occurrence of the phenomenon

+ many other ways

Application of the dasymetric method – example 1 (Bielecka A., 2005)

population density - choropleth method CORINE Land Cover classes – additional information

Application of the dasymetric method – example 1 (Bielecka A., 2005)

- binary method

- modification of areas by introducing weighs

Application of the dasymetric method – example 2 (Bajat et al., 2011)

choropleth map

dasymetric map (land cover data)

Population density maps of Timočka Krajina

Application dasymetric methods – example 3

(Slocum et al., 2009)

binary method + generalisation of different degrees

CARTOTYPOGRAM METHOD

- a special method placement of so-called typograms in the map
- typogram expresses relative values, most often %
- plotting the values on the axis system, always from the intersection
- comparison of the shape of individual typograms

multi-sided typograms

Centrogram

- expresses absolute values

Cartotypograms – examples (Voženílek, Kaňok, 2011)

structural cartotypogram

summation cartotypogram

NETWORK METHOD (network mapping method)

mainly used for <u>biomonitoring</u> (mapping the presence of animals or plants)

principle:

- the territory of the Czech Republic (or the whole of Europe) is divided into a network of squares with dimensions of approximately 11×12 km, which are derived from geographical coordinates (a total of 628 squares, including the outer 678 squares for the Czech Republic)
- when a single record of a species is found in a square, the square is considered "populated"
- <u>the occurrence</u> is indicated by a colour or symbol placed in a square
- colour + sign combination to <u>compare changes</u> in occurrence
- quantitative colour scale for a synthetic map of the <u>occurrence of</u> <u>multiple species</u> of the monitored bio-features

Network method – examples

Occurrence of molluscs in the Czech Republic in 2012

Network method – examples

Comparison of the occurrence of the common marten (Bombina bombina) in the Czech Republic in 2013 and 2007

Rozšíření druhu Bombina bombina podle zdroje: AOPK ČR, 2013

kartografická prezentace
AOPK ČR 2014, datový podklad MŽP

Network method – examples

Number of vertebrate species in the Czech Republic in 2010

SCALES IN CARTOGRAPHY

- a tool to quantify the phenomenon
- important for creating a good thematic map
- affects the clarity of the map
- input data analysis
 (qualitative × quantitative, relative × absolute, statistical methods)
- the scale must always be shown on the map!

What is important

- scale type selection
- the procedure for creating the width of the scale intervals
- final graphic design (choice of colours, etc.)
- a correctly formed legend

Division of scales

SCALE				
A. INTERVAL		B. FUNCTIONAL		
smoothly following	incremental	continuous	incremental	
constant	without hiatus		with hiatus	
regularly increasing or decreasing	with hiatus		as a result of changes in the formula	
irregular				

hiatus ... gap, interruption

- ... deletion of one or more intervals (containing no values)
- ... for the functional scale: part of the scale is omitted (the phenomenon does not occur)

Functional scales

- mainly for the diagram map method
- precisely defined mathematical relationship between the value of the represented phenomenon and a parameter of the graphic feature
- it is possible to get the specific size from the character parameter
- diagrams mostly geometric shapes with easily measurable parameters (column, square, circle)

Functions for creating diagram maps

Diagram	Relationship	Functions
column	linear	(f) en and an investigation of the second
square	quadratic	E manufikaan
circle	quadratic	(f en and en transmission)
cubes	cubic	(Conservation)

H – actual numerical value of the phenomenon; h – unit measure used in the diagram a, r, v – diagram parameters (side, edge, radius height)

Interval scales

- in methods of choropleths, diagram maps, isolines, in the method of dots (topographic approach)
- **number of intervals of the resulting scale: 4 to 6** (rarely up to 10)
- definition of intervals according to the statistical evaluation of the population – in particular according to the <u>frequency</u> <u>distribution of the phenomenon</u>
- in software for creating thematic maps (e.g. ArcGIS) data classification (*Classification*)

Data set classification

- **statistical parameters to be measured** (baseline or sample): sample size; sample boundaries; range of variation; arithmetic mean; median; variance and standard deviation, ...
- division of the population into equal-sized intervals: calculation of the approximate number of intervals - different approaches

 $m \approx \sqrt{n}$ $m \leq 5 \log n$ $m \approx 1 + 3,3 \log n$

where is the number of intervals and is the number of statistical units in the set

- **finding absolute frequencies** in these intervals + histogram *(frequency graph)*
- selection of intervals (classes) according to the frequency distribution of the phenomenon

(normal, multilevel, exponential, U-shaped distribution, distribution of Pearson-type-III curve, ...)

Data set classification

• statistical parameters
sample range (number of elements) nsample boundaries X_{max} ; X_{min} variation range $R = X_{max} - X_{min}$ arithmetic mean X_{mean} medianmedvariance $s^2 = 1 / n \sum_{i}^{n} (X_i - X_{mean})^2$ standard deviation $s \dots$ square root of the variance

Normal distribution

- phenomenon most often around the average, decreases significantly towards the extremes (Gaussian curve)
- use of the mean and standard deviation or its multiple

normal

normal flat

Incorrect right

Multivariate distribution

- disparate data set
- the most common case
- each peak area and its surroundings represent a typical attribute of the phenomenon under study
- frequent use of the natural fracture method

Exponential distribution

- most frequent occurrence low values
- distribution of the most frequent values exponentially
- minimum occurrences (high values) within one or two intervals

U-shaped division

- division of two higher frequency sections by regular intervals
- area of small occurrences of the phenomenon in a smaller number of intervals

Distribution of Pearson type-III curve

- division of the higher frequency section by regular intervals
- the area of small occurrences of the phenomenon and the area approximately parallel to the x-axis (the middle part of the curve) – into a smaller number of intervals

Different methods of determining intervals (classes)

- <u>equal intervals</u> equally distributed
- <u>quantiles</u> ... quartiles, quintiles, deciles intervals with the same number of phenomena using quantiles and average values
 e.g. 3 quartiles divide the statistical population into quarters, each of which contains 25 % elements
- <u>mean and standard deviation</u> intervals by mean and standard deviation
- <u>maximum breaks</u> (maximum breaks) ... isolated occurrence of a phenomenon value
- <u>natural breaks (Jenks)</u> division into intervals according to groups with similar values, empty spaces or inflection points are chosen as boundaries
- optimization methods (various algorithms...)

+ many others (yielding from statistics)

Comparison of data classification methods for scale development (Slocum et al., 2009)

40

Interval scales – applications

- not suitable for expressing small sets
- the values from the scale intervals should be represented graphically on the map (an interval usually contains more than one value)
- for a diagram map with an interval scale, the parameters of the resulting diagrams are calculated from the values of the phenomena corresponding to the centres of the individual intervals
- attention to the notation of the continuous scale in the legend: the principle of clearly chosen non-overlapping intervals, i.e.
 10,1–20,0 | 20,1–30,0 | 30,1–40,0 | 40,1–50,0
- choropleth: the intensity of a phenomenon usually expressed in colour – preferably shades of one colour or the transition of two adjacent colours in the spectrum
- the lightest shade means the least intensity of the phenomeno, the darker the shade, the greater the intensity of the phenomenon

Thematic maps – interesting links

• <u>http://www.datavis.ca/milestones/</u>

Milestones in the History of Thematic Cartography, Statistical Graphics and Data Visualization

• <u>http://www.worldmapper.org/</u>

thematic maps created by the method of cartographic anamorphosis

- <u>http://www.mapsofworld.com/thematic-maps/</u>
- http://www.indexmundi.com/map/?v=21000&r=eu&l=en

Literature

- VOŽENÍLEK, V., KAŇOK, J. et al. Methods of thematic cartography visualization of spatial phenomena. Olomouc: Palacký University in Olomouc, 2011, ISBN 978-80-244-2790-4
- SLOCUM, T.A., McMASTER, R.B., KESSLER, F.C., HOWARD, H.H. *Thematic Cartography and Geovisualization.* Pearson Education, Prentice-Hall, Third edition, 2009. ISBN 978-0-13-229834-6
- BIELECKA, E. A dasymetric population density map of Poland. In: *Proceedings of the International Cartographic Conference*, 2005. A Coruña, Spain.
- BAJAT, B., KRUNIÇ, N., KILIBARDA, M. Dasymetric mapping of spatial distribution of population in Timok region. International scientific conference and XXIV. meeting of Serbian Surveyors, 2011, Kladovo, Serbia.
- SEMOTANOVÁ, E. History, present and perspectives of reconstruction maps. In: *Historical Geography,* Prague: Historical Institute of the CAS 34, 2007, pp. 197-215.